W SSW PWeY TN

AD-A205 958

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGL (When Data . ntered)

ey — — T —-—

REPORT DOCUMENTATION PAGE

RLAD INSTRUCTIONS
BEFORF COMP_ETE™NG FORY

1. REPORT NUMBER j2. GOVY ACCESSION NO.

3. RECIPIENT S CATALOG NUMBLR

4. TITLE (and Subtitie) 880429WI.09053 .
Ada Compiler Validation Summary Report: TeleSoft,
Thc., TeleGen2 Ada Compiler for VAX/VMS to 17504, Version
©3.22 MicroVAX II to MIL-STD-1750A (Host) to (Target).

5. TYPL Of REPORT 8 PERIOD COVERED
05 May 1988 to 05 May 1989

8. P[M'ORNING"DRG. REPORT WUMBER

7. AUTHOR(s)

Wright-Patterson AFB
Dayton, OH, USA

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION AND ADDRESS

Wright-Patterson
Dayton, OH, USA

10. PROGRAM fLEMENT, PROJECTY, TASK

AREA & WORK UNIT WUMBERS

11. CONTROLLING OFFICE WAME AND ADDRESS

Ada Joint Program Office

United States Department of Defense
Washington, DC 20301~3081

12. REPDR1 DATE

ITI. WOWETR OF PAGES

14, MONITORING AGENCY NAME & ADDRESS(If gifferent from Controliing Otfice)
Wright-Patterson
Dayton, OH, USA

15, SECURITY CLASS (of this report)
UNCLASSIFIED

152, gEgksaﬂFICATION/DOUNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17.

UNCLASSIFIED

18. SUPPLEMENTARY NDTES

DISTRIBUTION STATEMINT (of the abstractenteredn Block 20 If different from Reporl)

19. KEYWORDS (Continue onreverse side if necessary #nd identify by block number)

1815A, Ada Joint Program Office, AJPO

Ada Programming language, Ada Compiler Validaztion Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

20. ABSTRACY (Continue on reverse side if necessary and identify by biock number)

TeleSoft, Inc., TeleGen2 Ada Compiler for VAX/VMS to 1750A, Version 3.22, MicroVaX II
under VMS, Version 4.6 (Host) to MIL-STD~1750A ECSPO RAID Simulator Version 4.0 (bare)
executing cn the host (Target), ACVC 1.9, Wright-Patterson AFB.

DD UK
1 JAN 73

1473 r01TION OF 1 NOV 65 IS OBSOLETE

S/N 03102-LF-D34-6601

UNCLASSIFIED <

SECURITY CLASSIFICATION OF THIS PAGL (whenDats Em.e'ed)

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada Compiler for VAX/VMS to 17504, Version 3.22

Certificate Number: 880429W1.09053

Host: Target:
MicroVAX II under MIL-STD-1750A
s, ECSPQO RAID Simulator
Version 4.6 Version 4.0 (bare) executing cn the host

Testing Completed 5 May 1988 Using ACVC 1.9

This report has been reviewed and is approved.

L/z;’wﬁ, L2 Kl

Ada Validation Facility

Steven P, Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

Kda Validation Organization NTIS enm T T
Dr. John F. Kramer T CRAK
Institute for Defense Analyses in‘“rf?.‘ o
Alexandria VA 22311 J"j{j“;"j” 2 S
teote T 000 -
Ry |
o e d
Covoere o i
. . . | —— e '
Ada J%int Program Office L e ’
Virginia L. Castor Ce o “ﬁ
(I S
Director i ‘ ' |
Department of Defense !
Washington DC 20301 H,{ ! :
T S
\ e
/ '.r“r' ‘
¥ E ';-;'
\\‘\-‘..—".v

AVF-VSR*1M8.0988

AVF Control Number:
88-03-30-TEL

Ada COMPILER
YALIDATION SUMMARY REPORT:
Certificate Number: 280429W1.09053
TeleSoft, Inc.
TeleGen2 Ada Compiler for VAX/VMS to 17504, Version 3.22
MicroVaX II to MIL-STD-17504 ECSPO RAID Simulator

Coumpletion of On-Site Testing:
5 May 1988

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:t
apda Joint Program Office
United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada Compiler for VAX/VMS to 17504, Version 3.22
Certificate Number: 880429W1.09053

Host: Targebt:

MicroVAX II under MIL-STD-1750A
N ECSPO RAID Simulator
Version 1.6 Version 4.0 (bare) evecutring on the host

Testing Completed 5 May 1988 Using ACVC 1.9

This report has been reviewed and is approved.

S (P D P

Ada Validation Facility

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH U45433-6503

Ada Validation Organizat
pr. John F. Kramer
Institute for DefensefAnalyses
Alexandria VA 2231

Ada Joint Program Office
Yirginia L. Castor
Director

Department of Defense
Washington DC 20301

CHAPTER 2

CHAPTER

NN NOVI EW N -

W N -

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT
-USE OF THIS VALIDATION SUMMARY REPORT .

REFERENCES ¢« ¢ ¢ ¢ « & o o o o o &
DEFINITION OF TERMS .+ . « + &« + &
ACVC TEST CLASSES « ¢« & « « - « &

CONFIGURATION INFORMATION

CONFIGURATION TESTED « &« & « o « &
IMPLEMENTATION CHARACTERISTICS . .

TEST INFORMATION

TEST RESULTS « ¢ ¢ ¢ o o ¢ o o & &
SUMMARY OF TEST RESULTS BY CLASS .
SUMMARY OF TEST RESULTS BY CHAPTER
WITHDRAWN TESTS « & ¢ o ¢ o o o &
INAPPLICABLE TESTS « o« ¢ « = o o o

¢ o »

.

s & 9 o

. - ‘.

TEST, PROCESSING, AND EVALUATION MODIFICATIONS

ADDITIONAL TESTING INFORMATION . .
Prevalidation . ¢« ¢« ¢« ¢ ¢ & o &
Test Method .« ¢« ¢ & ¢ & ¢ « & &
Test Site &+ 5 & o ¢ o o « o o &

DECLARATION OF CONFORMANCE

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDRAWN TESTS

e e o v s @

e e e & s o

e & & 5 e ® e o

* .

CHAPTER 1

INTRODUCTION

This Validation Summary Report <(¥SR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler wusing the Ada Compiler
Validation Capability ~(ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

" Even though all validated Ada compilers conform to the Ada Standard, it
must be understocd that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements 1legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 5 May 1988 at San Diego, CA..

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

QUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCEL
Wright~Patterson AFB OH U45433-£503

1-2

Y

e

INTRODUCTION

\

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-18154, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint

Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., December 1986,

4., Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard

Applicant

AVF

AVO

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL~STD-1815A, February 1983 and ISO 8652-1987.

The agency requesting validation.

The Ada Validation Facility. The AVF 1is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and
Guidelines.

The Ada Validation Organization. The AVQO has oversight
authority owrer all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO0 provides administrative and technical

1-3

INTRODUCTION

support for Ada validations to ensure consistent practices.
Compiler A processor for the Ada language. In the context of this

report, a compiler is any 1language processor, including

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a

test compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.
Target The computer for which a compiler generates code.
Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may c¢omprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Adc Standard. A test way be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard 1is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to whieh it belongs. Class 4, C, D, and E tests are executable,
and special program unit® are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantica. For example, a Class A test checks that reserved words
of another language (other than those alread- reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test 1is
passed if no errors are detected at compile time and the program executes
tc produce a PASSED message.

1-4

INTRODUCTION

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test i3 passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test 1is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when 1t 1is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to complle because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it 1is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class £ tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tesis check that incomplete or i{llegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. C(lass L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute thz main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity funetions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined ¢to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and

1-5

R

INTRODUCTION

place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values-~for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the 3suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that s
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, 1is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under the
following configuration:

Compiler: TeleGen2 Ada Compiler for VAX/VMS to 1750A, Version 3.22

ACVC Version: 1.9

Certificate Number: 880429W1.09053

Host Computer:

Machine: MicroVAX II

Operating System: YMS
Version 4.6

Memory Size: 10 Megabytes

Target Computer:

Machine: MIL-STD-17504A
ECSPO RAID Simulator
Version 4.0 executing on

the host
Operating System: (bare)
Memory Size: 6UK words

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests 1in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

. Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 1levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A034..H (8
tests), D56001B, D6UOOSE..G (3 tests), and D29002K.)

« Universal integer calculatiomns.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See tests
D440024, DHAQO2B, DUAOOKA, and DUAOOALB.)

. Predefined types.

This implementation supports the additional predefined types
LONG_INTEGER and LONG_FLOAT in the package STANDARD. (See tests
B86001C and BB6001D.)

. Based literals.

An implementation is allowed to reject a based 1literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC_ERROR or CONSTRAINT_ERROR during execution. This
implementation raises NUMERIC_ERROR during execution. {See test
E241014.)

. Expression evaluation.
Apparently some default initialization expressions for record
components are evaluated before any value is checked against a

component's subtype constraints. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2

4‘_J--IIIII-..IIIIIIII-II-II---r——

CONFIGURATION INFORMATION

This implementation uses all extra bits for extra range, and no
extra bits for extra precision. (See test C359034.)

In a comparison or membership test, sometimes NUMERIC_ERROR is
raised when an integer literal operand 1s cutside the range of the
base type. (See test Cl52324.)

In a fixed-point comparison or membership test sometimes
NUMERIC_ERROR is raised when a 1literal operand is outside the
range of the base type. (See test CU52524.)

Apparently underflow is not gradual. (See tests CU552UA..Z.)

Rounding.

Apparently, the method used for rounding to integer or to 1longest
integer is to round away from zero. (See tests CU6012A..Z.)

Apparently, the method used for rounding to integer in static
universal real expressions is to round away from zero. (See test
CUADT4A.)

Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a 'LENGTH that exceeds either
STANDARD. INTEGER'LAST or SYSTEM.MAX INT. For this implementation:

Declaration of an array type or subtype declaration with more
than SYSTEM.MAX_INT components raises NUMERIC_ERROR for a two
dimensional array when the second dimension length is greater
than MAX INT. Otherwise, no exception is raised. (See test
C36003A.)

No exception is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C362024.)

No exception is raised when 'LENGTH is applied to an array
type with SYSTEM.MAX_ INT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises NUMERIC_ERROR when the array objects are
sliced (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT _ERROR when the
length of a dimension is calculated and exceeds INTEGER'LAST.
(See test CS52104Y.)

CONFIGURATION INFORMATION

A null array with one dimension of 1length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises no exception. (See test E52103Y.)

In assigning one-dimensional array types, when checking whether
the expression's subtype is compatible with the target's subtype,
the expression appears to be evaluated in its entirety before
CONSTRAINT ERROR is raised. In assigning two-dimensional array
types, when checking whether the expression's subtype is
compatible with the target's subtype, the expression does not
appear to be evaluated in its entirety before CONSTRAINT_ERROR is
raised. (See test C52013A.)

+ Discriminated types.

When an incomplete type with discriminants is used in an access
type definition which uses a compatible discriminant constraint,
the declaration may be accepted or rejected during compilation.
This implementation accepts such subtype indications. (See test
E3B104A.)

In assigning record types with discriminants, when checking
whether the expression's subtype is compatible with the target's
subtype, the expression appears to be evaluated in its entirety
before CONSTRAINT ERROR is raised. (See test C52013A.)

.« Aggregates.

In the evaluation of a multi-dimensional aggregate, index subtype
checks appear to be made as choices are evaluated. (See tests
C43207A -and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test EU3212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test EN43211B.)

. Representation clauses.

An implementation might 1legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must rn-~ject it.

CONFIGURATION INFORMATION

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C35502I..J, C35502M..N, and A3900SF.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C35507I..J,
C3550T™..N, and C55B164.)

Enumeration representation clauses for bo~lean types containing
representational values other than (FALSE =z> 0, TRUE => 1) are not
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
not supported when the specified size is less than 16. (See test
A39005B.)

Length clauses with STORAGE_SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE_SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are not supported when a component
clause specifies that the component size is less than 16. (See
test A39005G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87RB62A.)

Pragma INLINE

The pragma INLINE is supported for procedures, but not for
functions. (See tests LA3004A, LA3004B, EA3004C, EA3004D,
CA3004E, and CA3004F.)

Input/output.

Neither of the packages SEQUENTIAL_IO and DIRECT_IO can be
instantiated with unconstrained array types and record types that
have discriminants without defaults. (See tests AE2101C, EE2201D,
EE2201E, AE2101H, EE2401D, and EE2401G.)

The director, AJPO, has determined (AI-00332) that every call to
OPEN and CREATE must raise USE_ERROR or NAME ERROR if file
input/output is not supported. This implementation exhibits this
behavior for SEQUENTIAL IO, DIRECT IO, and TEXT_IO.

2-5

CONFIGURATION INFORMATION

. Generics.

Generic unit specifications and bodies, as well as gubunits of
generic bodies, can be specified in seperate bodies. However,
the body of a generic unit i3 compiled or re-compiled after a unit
containing an jnstantiation of the generic unit, then the unit

containing the jnstantiation 1is made obsolete. (See
CA2009C, CA3011A, BC3204C, BC3205D, CA10124 and CA2009F.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors., The AVF
determined that 506 tests were inapplicable to this implementation. A1l
inapplicable tests were processed during validation testing except for 285
executable tests that use floating-point precision exceeding that supported
by the implementation and 173 executable tests that use file operations not
supported by the implementation. Modifications to the code, processing, or
grading for 11 tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D E L
Passed 106 1046 1363 17 12 45 2589
Inapplicable 4 5 ugp 0 6 1 506
Withdrawn 3 2 21 0 1 0 27
TOTAL 113 1053 1874 17 19 46 3122
3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 184 464 488 245 166 98 141 326 132 36 232 3 T4 2589
Inapplicable 20 108 186 3 0 ©0 2 1+ S5 0 2 0179 506
Withdrawn 2 %4 3 0 o0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 2u8 165 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

A35902C ATH106C AD1A01A B280034A BC31054
c34004A €35502p C35904A C35904B C35A03E
C35403R C37213H €37213J C37215C C3T7215E
C37215G C37215H c38102C Ci1402A chs5332a
Clis5614C €85018B C8TBO4B CC1311B CE2401H
CE3208A E28005C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 506 tests were inapplicable for the
reasons indicated:

. C35508I..J (2 tests) and C35508M..N (2 tests) use enumeration
representation clauses for boolean types containing
repraesentational values other than (FALSE => 0, TRUE => 1). These
clauses are not supported by this compiler.

3-2

\

I“

TEST INFORMATION

C35702A uses SHORT_FLOAT which is not supported by this
implementation.

A39005B uses a length clause specifying a 'SIZE of 1less than 16
tits for an enumeration type. This implementation requires that
the 'SIZE must be at least 16.

A39005G uses a record representation clause containing a component
clause specifying a size of less than 16 bits for the component.
This implementation requires that the size be at least 16 bits.

The following tests use SHORT_INTEGER, which is not supported by
this compiler:

C45231B C453048B Cu45502B CH5503B CU5504B
CU45504E C45611B C45613B CU5614B Ci56318
CH5632B B52004E C55B07B B55B09D

Cli5231D requires a macro substitution for any predefined numeric
types other than INTEGER, SHORT_INTEGER, LONG_INTEGER, FLOAT,
SHORT_FLOAT, and LONG_FLOAT. This compiler does not support any
such types.

C#45531M..P (4 tests) and Ch4553M..P (4 tests) use U48-bit
fixed~point base types which are not supported by this compiler.

C45651A has been ruled inapplicable to this implementation by the
AVO on the grounds that a choice of model numbers to represent the
upper bound of a fixed-point type is 1legitimate, but not the
choice expected by the test.

CY46014A has been ruled inapplicable to this implementation by the
AVO on the grounds that variable I1 may be optimized out, thus
avoiding the exceptions.

B86001D requires a predefined integer type cther than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

C86001F redefines package SYSTEM, but TEXT_I0 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT I0.

C96001A has been ruled inapplicable to this implementation by the
AVO on the grounds that delay statements need not be executed to
the accuracy related to SYSTEM,TICK.

CA2009C, CA2009F, BC3204C, and BC3205D are inapplicable because,
in this implementation, if a generic body is compiled or
recompiled after the generic is instantiated, then the unit
containing the instantiation is made obsolete. In these tests,

3-3

TEST INFORMATION

the obsolescence is reported at link time.

. CA3004F, EA3004D, and LA3004B use the INLINE pragma for functions,
which is not supported by this compiler.

. AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL_IO with unconstrained array types and record types
having discriminants without defaults. These instantiations are
rejected by this compiler.

. AE2101H, EE2401D, and EE2401G use instantlaticns of package
DIRECT IO with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected
by this compiler.

. The following 173 tests are inapplicable because sequential, text,
and direct access files are not supported:

CE2102C CE2102G..H(2) CE2102% CE2104A..D(4)
CE2105A..B(2) CE2106A..B(2) CE2107A..I(9) CE2108A..D(4)
CE2109A..C(3) CE2110A..C{3) CE2111A..E(5) CE2111G..H(2)
CE2115A..B(2) CE2201A..C{(3) CE2201F..G(2) CE2204A..B(2)
CE2208B CE22104 CE2401A..C(3) CE2401E..F(2)
CE2u40U4A CE2405B CE2U406A CE2407A
CE24084 CE24094 CE2410A CE24114A
CE3102B EE3102C CE3103A CE31044
CE3107A CE3108A..B(2) CE3109A CE31104A
CE3111A..E(5) CE3112A..B(2) CE3114A..B(2) CE31154
CE32034A CE3301A..C(3) CE33024a CE3305A
CE3402A..D(4) CE3403A..C(3) CE3403E..F(2) CE3404A..C(3)
CE3405A..D(4) CE3406A..D(4) CE3407A..C(3) CE3408A..C(3)
CE34094 CE3409C..F(4) CE3410A CE3410C..F(1)
CE34114A CE3412a CE34134A CE3413C
CE3602A..D(4) CE3603A CE3604A CE3605A4..E(5)
CE3606A..B(2) CE3704A..B(2) CE3704D..F(3) CE3704M..0(3)
CE3706D CE3706F CE3804A..E(5) CE3804G
CE3804I CE380u4K CE380u4M CE3805A..B(2)
CE38064a CE3806D..E(2) CE3905A..C(3) CE3905L

CE39064..C(3)

CE3906E..F(2)

. The following 285 tests require a floating-point accuracy that
exceeds the maximum of 9 digits supported by this implementation:

C35705F..Y (20 tests)
C35707F..Y (20 tests)
C35802F..Z (21 tests)
CU5321F..Y (20 tests)
cU45521F..Z (21 tests)
C45621F..Z (21 tests)
CU6012F..Z (21 tests)

C24113F..Y (20 tests)
C35706F..Y (20 tests)
C35708F..Y (20 tests)
CU5241F..Y (20 tests)
CU5421F..Y (20 tests)
CU5524F..Z (21 tests)
CUS641F..Y (20 tests)

TEST INFORMATION

. 3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

The following 9 Class B and 1 Class E tests were modified.

B2700%A was split into 27 separate tests, each containing exactly one
of the -- ERROR: 1lines from the original test.

B28001R, B28001V and E28002D were modified by adding "PRAGMA
LIST(ON);” as the first 1line of each file. If the first legal
occurrence of a LIST pragma has the parameter ON, then the
implementation does not generate any listing until the pragma occurs.

The following tests were split because they contain compilation
inconsistencies in the context clauses or separate parts of
compilation units. When this implementation detects such an
inconsistency, it terminates the compilation.

BA3006A BA3006B BA3007B BA30084 BA3008B BA3013A

CUAG12B failed but has been ruled as passed by the AVO on the grounds that
it raises an exception that is not handled by the test.

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the TeleGen2 Ada Compiler for VAX/VMS to 17504, Version 3.22 was submitted
to the AVF by the applicant for review. Analysis of these results
demonstrated that ¢the compiler successfully passed all applicable tests,
and the compiler exhibited the expected behavior on all inapplicable tests.

9-¢

saTJepunoq
2qe3f S68J4pPPEB E50JO® pP3TTeD 8Q J0U TTTM JTun TIVOINIWOISON

JoJdde yoes qe Jurqdwoad uoljzenutizucd
ou ‘sJo0udd 837dsep uoTeITdWOD SNUTIUOD aaxo0ud

§TSATBUR DIJUEWAS

pue 0730B3UAS 04 UOT3BITdWOD 30TJL53L JO0U S30P 104060
(53892

g SSBID UBY3 J8U30) STTJ BUTISTT 23BSID 30U SJ0P LSITON

(£Tuo s3893 g SSBTD) 9ITJ JUIISTI B S99ESJO 1SI1

uotqerrdmoo Jae3Je
UOT3BUJLOJUT JTUN 9JBTPOWIDJUT pIpadsuun €slalap Jz23300s

UOT3BRWIOJUT UOT3de0Xe Jo 3nd3no sy3 s2TQESTP SIWYN NOILJIOXION

8poOO pejeJauad ul sWOSUD auwTjzunJg ssaJdddne jqou s30p SSAUANSON
sadesssu ssaJBouad g9senbau HYOLINOKW
308334 YoimMg

:83UT3398 YO3TME BUuTMOTTOd
ay3 Juisn ps3saq SeM JaTTdwWoOO 9y °wWes3 UOTIEPTIIERA 8U] Aq pPBaMeTA’J pue
*our ¢aJoserel 4£q popTacuad £3dTJ08 PUBIIIOD BUTESN Pajsa] sem Ja1ydwmod oyl

*qs0Y 8y3 WoJ) pojutJad usyj 9J9M S3TNSSY °und
PUE PpONUTT oJdM £3693 STQRINOdXd TT® Pu® ‘IT XYAOJOTW 8y3 uoc poTrTdwod sem
£9597 JO 39S TInJ 943 ‘METP 03 POPROT oJaM S3TTJ 3803 oyj J493JV °Jajndwod
380y 9y3 o3u0 AT309JIp Ppepeol ousm odej OT38uUTEW Sy3 JO SFUSJUOD oYL

*3deq OF3ouUFRU AY] UOC WIOJ PSTITPOW JTBY] U DPIpNTOUT aJam Julysaly
uoTlIeprITRA24d By3 3Butanp suol3zeOTIIpouw Bulainbsa s3e’] *sadej oyjjzesulem
ay3 03 us33TJM FuTeq 8J0JAq PeZTWOIEND 24dM €anTes OIJTosds-uoTjejuswsduy
Jo o8n axeun eyl £3589} *Buisssdoouad J0J wesl UOT3EPTTIRA
2y3 £q °9178-uo usye3 sem suorstosdd Jurod~-Furieoly pejuoddnsun Jutainbaa
£9897 PUB €96987 UMBJPUITM J0J 4daoxa §9897 TTe Butuiejuod adej ojqsuBeuw y

*II XVAOJOTH 8Y3 U0 JuTqnoaxs (adeq)
0°f UOoTsJdp ‘JOjBTNWIS (IVH OJSOE VOSLI-AIS-TIW ® Pue ‘g'y uolsdap ‘SKA
Japun Suftjedado 3eouy IT XVAOJOTW ® JO Po3ISTSUOD UOTIeJ nITIUOD Byl °*JAV
ayq WoJJ WEeaj3 UOT3EPTITeA B Aq 9316-UO pPajldNpuod SeM f°| UOTSJIAA JADY Juisn
22°¢ uotlsJop ‘VOGLL 03 SHWA/XVA 403 J2TTdWo) epy guspneTadl 8yl Jo Jullssl

POU3IdN 3881 2°L°¢E

NOILVWYOANI LS3L

e

TEST INFORMATION

NOSPS application is not split ac¢ross state partition
sets
OPTIMIZE equivalent to setting the switch to ALL to include

the following:

PARALLEL indicates that one or more of the
subprograms being optimized may be
called from parallel tasks

RECURSE indicates that one or more of the
subprograms interior to the
unit/collection being optimized could
be called recursively by an
exterior subprogram

INLINE Enables inline expansion of those
subprograms marked with an INLINE
pragma or generated by the compiler

AUTOINLINE Enables automatic inline expansion of
any subprogram called from only one
place, as well as those marked by an
INLINE pragma or generated by the
compiler

CG_OPTIMAZATION sets level of code generator optimization
SUMMARY produces a listing of compilation unit statistics

CHECKS no effect (default setting) -- complement to
NOCHECKS which effects a pragma SUPPRESS for
the compilation

Class B tests were compiled using six identical MicroVaAX II host computers.
The remaining tests 1in other classes were compiled, linked, and executed
(as appropriate) using 4 MicroVAX II computers which also host the
simulator. Test output, compilation listings, and job logs were captured
on magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3.7.3 Test Site

Testing was conducted at San Diego, CA and was completed on 5 May 1988.

3-7

APPENDIX A

DECLARATION OF CONFORMANCE

TeleSoft, Inc. has submitted the followling Declaration
of Conformance concerning the TeleGen2 Ada Compiler for
VAX/VMS to 17504, Version 3.22

A-1

DECLARATION OF CONFORMANCE

Compiler Implementor: TeleSoft. Inc.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC), Version 1.9

Base Configuration

Base Compiler Name: TeleGen2 Ada Compiler for VAX 'VMS to 1750A
Compiler Version: 3.22

Host Architecture [SA: MicroVAX [I
OS & VER #: VMS. Version 4.6

Target Architecture [SA: MIL-STD-1750A ECSPO RAID Simulator Version 4.0
OS & VER #: bare

Implementor’s Declaration

I. the undersigned. representing TeleSoft, Inc. have implemented no deliberate extensions to the
Ada Language Standard ANSI/MIL-STD-1813A in the compiler listed in this declaration. 1
declare that Telesoft. Inc. is the owner of record of the Ada language compiler listed above and,
as such. is responsible for maintaining said compiler in conformance to ANS] 'MIL-STD-1815A.
All certificates and registrations for the Ada language compiler listed in this declaration shall be
made only in the owner's corporate name.

—_ ,
, ,//
(. —

s T

i, ‘/:'L IR Date: l“,\, 1,04 4

-

TeleSoft, Inc. 2
Raymond A. Parra. Director, Contracts & Legal

Owner’s Declaration

I. the undersigned. representing Telesoft, Inc.. take full responsibility f{or implementation and
maintenance of the Ada compiler listed above. and agree to the public disclosure of the final
Validation Summary Report. | declare that all of the Ada language compilers listed. and their
host target performance. are in compliance with the Ada Language Standard ANSI . MIL-STD-
1815A.

-
" S
,

—t s . -
— Pt . , ~

et Date: s/, 24 %
Telesoft. Inc.” :
Raymond A. Parra. Director. Contracts & Legal

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the TeleGen2 Ada Compiler for VAX/VMS to 17504, Version 3.22 are described
in the following sections, which discuss topies in Appendix F of the Ada
Standard. Implementation-specific portions of the package STANDARD are
also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG_INTEGER is range -2_147_UB3 648 .. 2_147_UB3_6UT;

type FLOAT is digits 6 range -1.0 ® (2 #% 127) ., 0.9999998 #* (2 #** 127);

type LONG_FLOAT is digits 9
range -1.0 * (2 #®% 127) ,, 0.99993998 # (2 #*%* 127);
type DURATION is delta 2#1.0#E-14 range -86400.0 .. +86400.0;

type SHORT_FIXED is delta 2#1.0#E-15 range -1.00000 .. +1.0 - 2#1.0#E-15;
type FIXED is delta 2#1.0#E-31 range -1.00000 .. +1.0 - 2#1.0#E-31;

end STANDARD;

APPENDIX F

1. Predefined Pragma

pragma LIST(ON|OFF});

It may appear anywhere a pragma is allowed. The pragma
has the effect of generating the source compilation.

The listing will begin at the first pragma list(ON)
statement if no previous pragma list(OFF) statement

was encountered. Otherwise, the listing will begin

at the top of the source.

Implementation Dependent Pragmas

pragma COMMENT(<string_literal>);

It may only appear within a compilation unit.

The pragma comment has the effect of embedding the given
sequence of characters in the object code of the compilation unit.

pragma LINKNAME(<subprogram name>, <string literal>);
It may appear in any declaration section of a unit.
This pragma must also appear directly after an interface pragma

for the same <subprogram name>. The pragma linkname has the

effect of making string _literal apparent to the linker.

pragma INTERRUPT(Function_Mapping);

It may only appear immediately before a simple accept statement,
a while loop directly enclosing only a single accept statement,

or a select statement that includes an interrupt accept alternative.
The pragma interrupt has the effect that entry calls to the
associated entry, on behalf of an interrupt, are made with a
reduced call overhead.

2. Implementation Dependent Attributes

There are no implementation dependent attributes.

3. Specification of Package SYSTEM

Package system Is

Type address Is Private;

null_address : Constant address;

13MAYSS8 B~2

Page 3

APPENDIX F, Cont.

Subtype physical address Is long_integer Range 164#0%..164#FFFFF#;
Subtype target logical address Is address;
Subtype target _address state Is integer Range 0..15;

Type subprogram_value Is
Record
logical address : target logical address;
address_state : target_address_state;
parameter_size : natural;
static_base :target logical address;
End Record;

Type name Is (telesoft ada);

system_name : Constant name := telesoft_ada;

storage unit : Constant := 16;

memory size : Constant := 65536;

min_int : Constant := -(2147483648);

max_int : Constant := (2147483648) - 1;

max_digits : Constant := 9;

max_mantissa : Constant := 31;

fine_delta : Constant := 1.0 / (2 ** (max_mantissa - 1));
tick : Constant := 0.0001;

Subtype priority Is integer Range 0..15;
max_object size : Constant := max_int;
max_record count : Constant := max_int:
max_text jo_count : Constant := max_int-1:
max_text_io_field : Constant := 1000;

Private

Type address Is Access integer;
null_address : Constant address := null;

End system;
4. Restrictions on Representation Clauses

The Compiler supports the following representation clauses:

13MAYSS8 B-3

Page 4

Length Clauses: for enumeration and derived integer types 'SIZE
attribute (LRM 13.2(a))
Length clauses: for access types 'STORAGE SIZE attribute (LRM13.2(b))
Length Clauses: for tasks types 'STORAGE SIZE attribute (LRM 13.2(c))
Length clauses: for fixed point types 'SMALL attribute (LRM13.2(d))
Enumeration clauses: for character and enumeration types other than
character and boolean (LRM 13.3)

13MAYSS B-4 Page 5

Ch

APPENDIX F, Cont.
Record representation clauses (LRM 13.4)
Address Clauses: for objects and entries (LRM 13.5(a)(c))

"his compiler does NOT support the following representation clauses:

Enumeration clauses: for boolean (LRM 13.3)
Address clauses for subprograms, packages, and tasks (LRM 13.5(b))

Note: The VAX/1750A compiler contains a restriction that allocated
objects must have a minimum allocation size of 16 bits.
5. Implementation dependent naming conventions
There are no implementation-generated names denoting

impiementation dependent components.

6. Expressions that appear in address specifications are interpreted
as the first storage unit of the object.

7. Restrictions on Unchecked Conversions
Unchecked conversions are allowed between any types unless the
target type is an unconstrained record or array type.

8. 1/0 Package Characteristics

Instantiations of DIRECT IO and SEQUENTIAL 10 are supported with

the following exceptions:
* Unconstrained array types.

* Unconstrainted types with discriminants without default
values.

* In DIRECT 10O the type COUNT is defined as follow:
type COUNT is range 0..2 147 483 647,
* In TEXT 10 the type COUNT is defined as follows:

type COUNT is range 0..2 147 483 645;

\

I3SMAYSS B-5

\

Page 6

APPENDIX F, Cont.
* In TEXT 1O the subtype FIELD is defined as follows:

subtype FIELD is INTEGER range 0..1000;

9. Definition of STANDARD
STANDARD is not an Ada package with a specification in our implementation. Our
compilation system does not compile any source corresponding to the predefined
package STANDARD. In fact, STANDARD cannot generally be written fully using
standard Ada “ecause the definitions of predefined numeric types like INTEGER and
FLOAT require specification of properties that cannot be defined by means of Ada
type declarations. It would probably be more appropriate for the AVO to request
implementations to provide the names of all predefined numeric types and the values
of their various attributes instead of asking for some artificially constructed source
for STANDARD, especially since the predefined numeric types are the only
declarations of allowed variation within the package. The generation of package
STANDARD in our implementation is achieved by means of a special text file that
specifies the names and certain attribute values for the various numeric types
supported by the target configuration.
For this target system the numeric types and their properties are as follows:
Integer types:
INTEGER
size = 16
first = -32768
last = 32767
LONG INTEGER
size = 32
first = -2147483648
last = +2147483647
Floating-point types:
FLOAT
size = 32
digits = 6
'small = 2.58494E-26
'large = 1.93428E+25
13MAYSS B-6 Page 7

APPENDIX F, Cont.

‘first = -1.0*2**127

last = .9999998*2**127
machine_radix =2
mach'me_mantissa =24
machine_em'm =-128
machine_emax = +127

LONG_FLOAT

size = 48
digits = 9
'small = 1.89410711E-40
'large = 8.50238710E+34
first = -1.0%2*%127
‘last = .9999998*2**127
machine_radix =2
machine_mantissa. = 39
machine_em'm = -128
machine_emax = +127

Fixed-point types:
SHORT FIXED

size = 16

delta = 2#1.0#e-15

first = -1.00000

last = +1.0 - 2#1.0#e-13

FIXED

size = 32

delta = 2#1.0#e-31

first == -1.00000

last = +1.0 - 2#1.0#e-31

DURATION
size = 32
delta = 2#1.0#e-14

first = -86400
last = +86400

13SMAYS8S8 B-7

Page 8

v d

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are glven
below.

Name and Meaning Value

$BIG_ID1 (1 .. 199 => 'arY, 200 => '1")
Identifier the size of the
maximum 3input line 1length with
varying last character.

$BIG_ID2 (1 .. 199 => rar, 200 => 12')
Identifier the size of the
maximum input line 1length with
varying last character.

$BIG_ID3 (1 .. 100 => 'A', 101 => '3,

102 .. 200 => 'A")

Identifier the size of the
maximum input line 1length with
varying middle character.

$BIG_ID4 (1 .. 100 => 'A', 101 => 4,

102 .. 200 => 'A')

Identifier the size of the
maximum input line length with
va: ying middle character.

$BIG_INT_LIT (1 .. 197 => 0', 198 .. 200 => "298")

An integer 1literal of value 298
with enough leading =zeroes so
that it is the size of the
maximum line lenrth.

TEST PARAMETERS

Name and Meaning

Value

$BIG_REAL LIT
A universal real 1literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG_STRING!
A string literal which when
catenated with BIG_STRING2
yields the image of BIG_ID1.

$BIG_STRING2

A string literal which when
catenated to the end of

BIG_STRING1 yields the image of
BIG_ID1.
$BLANKS
A sequence of blanks twenty
characters less than the size
of the maximum line length.
$COUNT_LAST
A universal integer
literal whose value is
TEXT_IO.COUNT'LAST.
$FIELD_LAST
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.
$FILE_NAME WITH_BAD_CHARS
An external file name that
either contains invalid
characters or is +too 1long.
$FILE_NAME WITH WILD_CARD_CHAR
An external file name that
aither contains a wild card

character or is too long.

$GREATER_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

(1 .. 194 => '0', 195 .. 200 => "§9.0E1")

(1 2> ™1, 2 .. 102 => 'A', 103 => ')

(1 => w2 ,.101 => 'AY,
102 => "1, 103 => ')

(1 e 180 => ! ')

2147483645

1000

BAD CHARS™#.%!X"

"WILD_CHAR®.NAM"

100_000.0

C-2

\

Name and Meaning

TEST PARAMETERS

Value

$GREATER_THAN_DURATION BASE_LAST
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL_EXTERNAL_FILE_NAME1
An external file name which
contains invalid characters.

$ILLEGAL_EXTERNAL_FILE_NAMEZ
An external file name which
is too 1long.

$INTEGER_FIRST
A universal integer 1literal
whose value 1is INTEGER'FIRST.

$ INTEGER_LAST

A universal integer 1literal

whose value is INTEGER'LAST.
$INTEGER_LAST PLUS 1
A universal integer literal

whose value is INTEGER'LAST + 1.

$LESS_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_THAN_DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

$MAX_DIGITS
Maximum digits supported for
floating-point types.
$MAX_IN_LEN
Maximum input line length

permitted by the implementation.

$MAX_INT
A universal
whose value is

integer 1literal
SYSTEM.MAX INT.

$MAX_INT_PLUS_1
A universal integer literal
whose value is SYSTEM.MAX INT+1.

131_073.0

"BADCHAR"@.~1"

"ALL_FILE NAMES_ILLEGAL"

-32768

32767

32768

~100_000.0

-131_073.0

200

2147483647

2147483648

Cc-3

TEST PARAMETERS

Name and Meaning

Value

$MAX_LEN_INT BASED_LITERAL

A universal integer based
literal whose value is 2#11#
with enough 1leading =zeroes in
the mantissa to be MAX IN_LEN
long.

$MAX_LEN_REAL_BASED_LITERAL

A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX IN LEN long.

$MAX_STRING_LITERAL
A string 1literal of size
MAX_IN_LEN, including the quote
characters.

$MIN_INT
A universal integer literal
whose value is SYSTEM.MIN_INT.

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT INTEGER,
LONG_FLOAT, or LONG_INTEGER.

$NEG_BASED_INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

(1 .. 2 => "2, 3 .. 197 => '0°',
198 .. 200 => "11:M)

(1 o 3 => "16:", u e 196 = '0',
197 *s 200 => "FoE:")

(1 > ™1, 2 ,.199 => 'A', 200 => '"')

~2147483648

SHORT_SHORT_INTEGER

16#/FFFFFFFE#

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 24 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

. B28003A: A basic declaration (line 36) incorrectly follows a
later declaration.

. E28005C: This test requires that M"PRAGMA LIST (ON);" not
appear in a 1listing that has been suspended by a previous
"PRAGMA LIST (OFF);"; the Ada Standard is not clear on this
point, and the matter will be reviewed by the AJPO.

. C34004A: The expression in line 168 yields a value outside
the range of the target tvpe T. but there is no handler for

CONSTRAINT_ERROR.

. C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

. A35302C: The assignment in line 17 of the nominal upper
bound of a fixed~point type to an object raises
CONSTRAINT_ERROR, for that value lies outside of the actual
range of the type.

. C35904A: The elaboration of the fixed-point subtype on 1line
28 wrongly raises CONSTRAINT_ERROR, because its upper bound
exceeds that of the type.

. C35904B: The subtype declaration that is expected to raise
CONSTRAINT ERROR when 1its compatibility is checked against
that of various types passed as actual generic perameters,
may, in fact, raise NUMERIC_ERROR or CONSTRAINT_ERROR for
reasons not anticipated by the test.

e

WITHDRAWN TESTS

. C35A03E and C35A03R: These tests assume that attribute
'MANTISSA returns 0 when applied to a fixed-point type with a
null range, but the Ada Standard does not support this
assumption.

. C37213H: The subtype declaration of SCONS in 1line 100 is
incorrectly expected to raise an exception when elaborated.

« C37213J: The aggregate in 1line U451 incorrectly raises
CONSTRAINT_ERROR.

. C37215C, C3T215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with
type CONS.

. €38102C: The fixed-point conversion on 1line 23 wrongly
raises CONSTRAINT_ERROR.

. Ch1402A: The attribute 'STORAGE_SIZE is incorrectly applied
to an object of an access type.

. CH53324: The test expects that either an expression in 1line
52 will raise an exception or else MACHINE OVERFLOWS is
FALSE. However, an implementation may evaluate the
expression correctly using a type with a wider range than the
base type of the operands, and MACHINE OVERFLOWS may still be
TRUE.

. CA45614C: The function call of IDENT_INT in line 15 uses an
argument of the wrong type.

. ATY4106C, €85018B, CB7BOUB, and CC1311B: A bound specified in
a fixed-point subtype declaration 1lies outside of that
calculated for the base type, raising CONSTRAINT_ERROR.
Errors of this sort occur at lines 37 & 59, 142 & 143, 16 &
48, and 252 & 253 of the four tests, respectively.

. BC3105A: Lines 1539 through 168 expect error messages, but
these lines are correct Ada.

. AD1TAO1A: The declaration of subtype SINT3 raises
CONSTRAINT _ERROR for implementations which select INT'SIZE to
be 16 or greater.

. CE2401H: The record aggregates in lines 105 and 117 contain
the wrong values.

. CE3208A: This test expects that an attempt to open the
default output file (after it was closed) with mode IN FILE
raises NAME ERROR or USE_ERROR; by Commentary AI-000L8,
MODE_ERROR should be raised.

D=2

